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Abstract

Most classical statistical tests assume data are normally distributed. If this assumption is not
met, researchers often turn to nonparametric methods. These methods have some drawbacks,
and if no suitable nonparametric test exists, a normal distribution may be used inappropri-
ately instead. A better option is to select a distribution appropriate for the data from dozens
available in modern software packages. Selecting a distribution that represents the data gen-
erating process is a crucial but overlooked step in analysing data. This paper discusses several
alternative distributions and the types of data that they are suitable for.
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Introduction

Statistical tests commonly used in biology such as t-tests, ANOVAs, and regressions assume a
normal or Gaussian distribution for the data. However, real data are often bounded, skewed,
censored, truncated, have outliers, or do not follow a normal distribution for another logical
reason. A common response is to switch to nonparametric tests, but these methods replace
the measured values by ranks, which loses information. In addition, no conclusions can be
drawn about effect sizes (e.g. mean difference between groups), they cannot be used to make
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predictions, they are highly sensitive to their own set of assumptions, and they may alter the
hypothesis being tested1.

The data of any experiment or observational study can be considered as arising from an
unidentified statistical distribution. Nature need not conform to a distribution invented by
humans, but it is convenient to represent the data as having been generated from such a
distribution to enable parametric statistical inference. There is no good reason to use a
normal distribution for all analyses when many more distributions are available, and selecting
an appropriate distribution is an integral part of the data analysis process.

Suppose we run an experiment in which 20 animals are randomly assigned to either a control
(𝐶) or drug (𝐷) condition with 10 animals in each group. We can represent this with the
following pair of equations, where 𝑦 is the outcome variable and the subscript 𝑖 is the animal
index. Animals 1 to 10 are controls and animals 11 to 20 receive the drug.

𝑦𝑖 ∼ Dist(𝜇𝐶, 𝜎), 𝑖 = 1 … 10
𝑦𝑖 ∼ Dist(𝜇𝐷, 𝜎), 𝑖 = 11 … 20

The tilde (∼) is read as “is distributed as” or “is generated from”, and so the control data in
the first equation are generated from some unspecified distribution (Dist) with a mean of 𝜇𝐶
and a standard deviation of 𝜎. Similarly, the outcome values in the drug group are generated
from the same distribution with a different mean of 𝜇𝐷 and the same standard deviation 𝜎.
There is no 𝐶 or 𝐷 subscript on 𝜎, indicating that we are assuming a common within-group
standard deviation for the two groups (the homogeneity of variance assumption).

In an actual experiment, we only know the 𝑦𝑖 values and the experimental group an animal
belongs to. Given this information, we need to select the distribution (Dist) that we believe
generated the 𝑦𝑖 values and then estimate all the parameters (𝜇𝐶, 𝜇𝐷, 𝜎). Finally, we can test
if the mean parameters differ between groups. This is called a parametric analysis because we
test or compare parameters from statistical distributions. Therefore, to be able to compare
𝜇𝐶 and 𝜇𝐷 sensibly, the distribution we select should reasonably describe the 𝑦𝑖’s. If choos-
ing a distribution seems strange, it is because biologists are usually taught only the normal
distribution and expected to use it for most analyses.

The normal distribution plays another role in statistics: as the sample size increases, the
uncertainty in the 𝜇’s approximates a normal distribution, even if the 𝑦𝑖’s follow some other
distribution (Central Limit Theorem). This approximation may be poor in some in vivo
experiments as sample sizes tend to be small, which leads to inaccurate p-values and confidence
intervals when the distribution of the data is far from normal.
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Four alternative distributions

In the following section, we describe the Poisson, Student-t, Gamma, and Beta distributions
and the types of data they are suitable for. They can be used with any experimental design
(multiple groups, multiple factors, continuous variables, nested data), and form a class of
models called generalised linear models. An example data set for each distribution is shown
in Figure 1. Table 1 shows the results of analysing the data using the appropriate distribution
(“Best”), a normal distribution, and a nonparametric Wilcoxon test.

Count data are non-negative integers (0, 1, 2, 3, etc.) and therefore are bounded below by zero.
The data may contain only a few discrete values, making a normal distribution inappropriate.
It is only when the data are close to zero that the lower bound and discreteness makes the
normal approximation less accurate. If the counts are large and far from zero, they can often
be approximated with a normal distribution. Furthermore, the variance of count data typically
increases with the mean, violating the homogeneity of variance assumption. Figure 1A shows
an example of such data, which could be the number of tumours each animal has, or the number
of marbles buried by each animal in the marble burying test. The data in this example contains
only four unique values (0-3), and an alternative distribution for such data is the Poisson. The
Poisson distribution has a single parameter for the mean, and no separate parameter for the
variance, which is assumed proportional to the mean (the Negative Binomial distribution is also
appropriate for count data and has a parameter for the variance). Analysis of this data using
a Poisson distribution (“Best” in Table 1), normal (t-test), or a nonparametric Wilcoxon test
gives similar p-values and overall conclusions. But there is more to an analysis than p-values
– when using a normal distribution predictions include negative values, which are impossible
since the data are counts and must be ≥ 0. Furthermore, the residuals (the difference between
the actual and predicted values) should be normally distributed, but this is not the case for
the normal model, indicating that the normal approximation is poor, and the p-values may be
unreliable.

Table 1: Analysis summary. P-values for the drug effect and estimates (95% CI) for the mean
difference between groups. The CI width is calculated as the upper minus the lower
95% CI value and measures the precision of the estimate. Residual P is the p-value
for testing the normality of the residuals (p < 0.05 means the residuals are not
normally distributed). Predictions indicates if model predictions include impossible
(e.g. negative) values. All values are possible with a Student-t distribution, so a
model cannot have impossible predictions (N/A). The Normal model analysis for the
Gamma-distributed data was performed on log-transformed values.

Poisson Student-t Gamma Beta
Best P-value 0.027 0.018 0.011 0.087

Estimate 1.22 1.32 1.60 0.27
95% CI (0.23, 2.22) (0.34, 2.30) (0.5, 2.7) N/A
CI width 1.99 1.96 2.2 N/A
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Poisson Student-t Gamma Beta
Residual P 0.985 0.866 0.900 0.998
Predictions OK N/A OK OK

Normal P-value 0.017 0.870 0.293 0.100
Estimate 1.20 0.18 0.94 0.27
95% CI (0.31, 2.09) (-2.06, 2.42) (-0.76, 2.64) (-0.04, 0.57)
CI width 1.78 4.48 3.4 0.61
Residual P 0.008 <0.001 0.023 0.008
Predictions Impossible N/A OK Impossible

Wilcoxon P-value 0.025 0.075 0.089 0.089

Outliers in data are common. Figure 1B shows one or two outliers in the drug group, which
also causes the variance to be larger than the control group. Without these outliers, the drug
appears to have a higher average value. Assume these outlying points are reproducible features
of such an experiment and not a one-off event particular to this experiment. It is better to
use a distribution that allows for outliers instead of removing them using arbitrary criteria. In
such cases, a Student-t distribution can be used. Student-t distributions are generalisations
of normal distributions with a third parameter that can either be fixed or estimated from the
data and which accounts for the outliers. Both the standard t-test (which assumes the data
are normally distributed) and Wilcoxon test give p-values greater than 0.05, but modelling
the data as arising from a t-distribution gives p=0.018, so the result would differ depending
on the analysis (Table 1). The normal distribution performed especially bad in this analysis
with a different estimated effect size, a much wider 95% CI interval width (less precision), and
non-normal residuals.

Many outcomes are bounded by zero, positively skewed, and often cover several orders of
magnitude (Fig. 1C). These include time-to-event data, such as time to complete a maze or
survival time, as well as concentrations of genes, proteins, or metabolites. Furthermore, the
variances of these data tend to be higher in groups with higher means. A log-transformation
is often used to normalise the data and equalise the variances, which are then analysed using a
normal distribution. This implicitly assumes the original values are log-normally distributed.
Even though log-transforming the data may improve the skewness and unequal variances, it
may not be the best transformation2. Another option is to directly model the data as log-
normally distributed. The main advantage is that we can compare the log-normal distribution
with other similar distributions that might better describe the skewness, such as a Gamma or
Weibull distribution. The Weibull distribution, for example, is often used for survival analysis.
These data were simulated from a Gamma distribution, and Table 1 compares a Gamma
model with normal model on the log-transformed values. Despite log-transforming these data,
a normal model has much less power (larger and non-significant p-value), less precision, and
still has non-normal residuals. Hence, different conclusions would be reached when using the
Gamma model versus a normal model on log-transformed data or a nonparametric test.
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Figure 1: Four distributions and the type of data they are suitable for (A-D).
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Finally, data may be proportions or percentages which lie between zero and one (Fig. 1D;
percentages can always be divided by 100 to put them between zero and one). Furthermore,
these data are characterised by small variances at the ends of the range and a maximal variance
in the middle. Examples include body fat percentage or the proportion of time spent in the
target quadrant of the Morris water maze. The Beta distribution is appropriate for this type
of data as it is defined for values between zero and one3. In cases where the values are in the
middle of the range, a normal distribution may be reasonable. Note that the Beta distribution
is appropriate for “parts of a whole” data and not for counts such as “𝑥 out of 𝑛”; for example,
seven errors out of 20 attempts, or 18 positive cells out of 200 (a Binomial distribution is then
applicable). As shown in Table 1, all analyses yield a similar p-value, but the predictions for the
normal model again include impossible values and the residuals are not normally distributed
(95% CI are not reported as they are not directly comparable to the normal model results).

Across the different data sets the Wilcoxon test often returns similar p-values as the best
analysis – illustrating one of the benefits of nonparametric methods. But they cannot be used
for more complex analyses, such as adjusting for baseline measurements or body weight, and
they provide no estimate of mean differences between groups and the associated uncertainty,
and they cannot be used to make predictions.

Summary

Researchers sometimes believe that non-normal data indicate a problem with the data, but
it usually reflects a problem with the chosen distribution. An appropriate distribution must
be selected as part of an analysis, but how is the distribution determined? Using background
knowledge (are the data counts?) and also empirically by examining residuals and whether
data simulated from the model resemble the observed data4. The gamlss R package contains
these distributions, as well as many others, and the brms R package can be used for Bayesian
analyses5,6. Both of these packages have distributions for censored, truncated, and zero in-
flated data, which are additional reasons that observed values may deviate from normality.
Crawley provides a general introduction to R and how to analyse these types of data using
biological examples7, and see Gelman et al.8 and Westfall and Arias9 for a general introduction
to data analysis. These methods are unavailable in GraphPad Prism and Excel, and there-
fore these products cannot be recommended. However these methods are available in most
statistical software such as SPSS, SAS, JMP, and Stata, and details can be found in their
documentation.
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Ethics Statement

This study did not require ethical board approval because it did not contain human or animal
trials.

Data availability

The simulated data and R code are available on Github: https://github.com/stanlazic/lab-
animals-distributions.
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