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Modeling hippocampal neurogenesis across the lifespan in seven species
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Abstract

The aim of this study was to estimate the number of new cells and neurons added to the dentate gyrus across the lifespan, and to compare
the rate of age-associated decline in neurogenesis across species. Data from mice (Mus musculus), rats (Rattus norvegicus), lesser hedgehog
tenrecs (Echinops telfairi), macaques (Macaca mulatta), marmosets (Callithrix jacchus), tree shrews (Tupaia belangeri), and humans (Homo
sapiens) were extracted from 21 data sets published in 14 different reports. Analysis of variance (ANOVA), exponential, Weibull, and power
models were fit to the data to determine which best described the relationship between age and neurogenesis. Exponential models provided
a suitable fit and were used to estimate the relevant parameters. The rate of decrease of neurogenesis correlated with species longevity
(r � 0.769, p � 0.043), but not body mass or basal metabolic rate. Of all the cells added postnatally to the mouse dentate gyrus, only 8.5%
(95% confidence interval [CI], 1.0% to 14.7%) of these will be added after middle age. In addition, only 5.7% (95% CI 0.7% to 9.9%) of
the existing cell population turns over from middle age and onward. Thus, relatively few new cells are added for much of an animal’s life,
and only a proportion of these will mature into functional neurons.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Levels of hippocampal neurogenesis have been shown to
correlate with certain learning and memory tasks (Shors et al.,
2001) as well as performance on measures of depression in
rodents (Santarelli et al., 2003). New neurons generated in the
hippocampus of adult animals can functionally integrate into
the neural circuitry (Kee et al., 2007; van Praag et al., 2002)
and have different electrophysiological properties compared
with existing cells (Schmidt-Hieber et al., 2004), suggesting
that they may play a unique role in information processing.
Because levels of neurogenesis can only be determined post-
mortem (although a novel nuclear magnetic resonance (NMR)
approach may circumvent this; Manganas et al., 2007), it is
difficult to estimate the number of new neurons that function-

* Corresponding author at: Bioinformatics and Exploratory Data Analy-
sis, F. Hoffmann-La Roche, 4070 Basel, Switzerland. Tel.: �41 6168
73596.
E-mail address: stan.lazic@cantab.net (S.E. Lazic).

0197-4580/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
10.1016/j.neurobiolaging.2011.03.008
ally integrate into the dentate gyrus (DG) throughout the life an
organism. The size of the DG does not increase with age and
the number of granule cells remains fairly constant (Ben Ab-
dallah et al., 2010). A commonly cited number of new neurons
is 6% of the total number of cells in the granule cell layer
(GCL), or 30%–60% of the afferent and efferent population of
neurons, based on an early report by Cameron and McKay,
2001). However, this was based on a single time point in
young adult rats and cannot be extrapolated to older animals,
and it is well known that age has one of the largest effects
on neurogenesis (Kuhn et al., 1996, and see Supplemen-
tary Table 2).

Measuring the number of new neurons is difficult be-
cause markers of proliferation measure all dividing cells and
are not neuron-specific. Labeling cells with 5-bromo-2’-
deoxyuridine (BrdU) and a neuronal marker (after a suitable
delay to allow the cells to mature) is problematic because of
the complex dynamics of BrdU-labeled cells, which con-
tinue to divide for several days after initial labeling (Hayes
and Nowakowski, 2002), thus making it difficult to deter-

mine the number of cells that were undergoing cell division
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at the time of BrdU injection. In addition, the number of
labeled cells is proportional to the dose of BrdU (Cameron
and McKay, 2001). Using retroviral vectors is another
method, but this technique may not label all dividing cells
(see Breunig et al., 2007 for a review). Markers of immature
neurons such as doublecortin (DCX) and neurogenic differ-
entiation factor (NeuroD) can also be used to determine the
number of new neurons (Couillard-Despres et al., 2005; von
Bohlen Und Halbach, 2007), but these markers are ex-
pressed for several weeks, and therefore it is difficult to
estimate the number of new neurons at a single time point,
such as the number of new neurons added in a single day.
This makes it difficult to estimate the total number of cells
added during the life of an animal, as cell cycle kinetics
need to be taken into account.

The literature was therefore searched for publications
that examined proliferation or neurogenesis in the hip-
pocampus at multiple time points. Data were extracted from
these reports and used to estimate the relationship between
neurogenesis and age, and to derive some important quan-
tities, such as the total number of proliferating cells added
during the lifespan, and the number of new neurons added
during various life stages. In addition, the majority of stud-
ies used rats and mice, and a quantitative comparison across
species has not been conducted, which might elucidate
evolutionary and phylogenetic aspects of neurogenesis.

Data from Ben Abdallah et al. (2010) were used to
determine the functional form of the relationship between
neurogenesis and age (i.e., which model was best). When
this was determined, a model of the same functional form
was fit to all of the other data sets, and the parameters
estimated. The rate of decrease in proliferation and neuro-
genesis was the main parameter of interest and was corre-
lated with species longevity, body mass, and basal meta-
bolic rate (BMR). Next, estimates were made of the total
number of cells added to the DG, the number of new
neurons added, and how the addition of new cells was
distributed across different life stages. Data from Ben Ab-
dallah et al. (2010) were used for these estimates.

2. Methods

2.1. Data

Data were obtained from articles indexed in PubMed
with the following search criteria: “neurogenesis AND (hip-
pocamp* OR dentate) AND (age OR aging)”, up to and
including articles from 28 February 2010. In addition, ref-
erence lists from these reports were examined for other
potential studies. Only those papers that contained at least 4
time points were used, and data were accurately extracted
from the graphs using g3data software (www.frantz.fi/software/
g3data.php). Analysis was conducted with R (version
2.10.1; Ihaka and Gentleman, 1996; R Development Core

Team, 2010). e
2.2. Model fitting and parameter estimation

Only data from Ben Abdallah et al. (2010) were used to
compare the various models. This was the only suitable
study because the raw data were presented rather than sum-
mary statistics (e.g., means and error bars), observations
were made at 7 time points, a reasonable estimate of the
intercept could be obtained because juvenile animals were
included, there were approximately 5 replicates at each time
point, Ki-67 was used as a marker of proliferation ( BrdU
kinetics would have added greater complexity), modern
stereological methods were used, and results were reported
as the absolute number of labeled cells. Several empirical
models were fit to the data, including analysis of variance
(ANOVA), exponential, biexponential, Weibull, and power.
The biexponential model did not converge (likely because it
was not a suitable model, and the difficulty of estimating
parameters from sums of exponentials; Bates and Watts,
1988), and was not considered further. Models were com-
pared using an information-theoretic approach described in
detail in Burnham and Anderson (2002) and Anderson
2008).

In the models below, t is the age of the animals (in
onths), and N(t) is the number of labeled cells at age t.
The ANOVA model has the form

ANOVA : N�t� � � � �t (1)

where � is the overall mean and � is the difference between
the overall mean and the mean of the animals at age t. This
is the most common model used to analyze the relationship
between age and neurogenesis, and it has the advantage of
being the most flexible, but at the cost of greater complex-
ity, less precise estimates, more difficult to interpret, and
leads to unnecessary post hoc tests (Lazic, 2008). Never-
theless, it can be used as a baseline model to compare
against the others. The exponential model has the form

Exponential : N�t� � �e��t � � (2)

where � is the slope (how quickly the number of labeled
cells decrease over time), � is the lower asymptote (which
allows neurogenesis to decrease to a nonzero level), and �
is the “drop” — the difference between the number of cells
at birth (t � 0) and the lower asymptote. If � � 0 then � is
the y-intercept (the number of labeled cells at birth). The
value of the slope can also be expressed more intuitively as
a half-life (t1/2 � ln2/�), which is the length of time (in

onths) for the number of labeled cells to decrease by half.
t least two previous studies (Ben Abdallah et al., 2010;
imon et al., 2005) recognized that the relationship between
roliferating cells and age can be described by an exponen-
ial model. The Weibull model has the form

Weibull : N�t� � �e��t	 � � (3)

here �, �, and � have the same interpretation as in the

xponential model, and the additional parameter 	 allows

http://www.frantz.fi/software/g3data.php
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one to model a changing rate of proliferation or neurogen-
esis over time. If 	 � 1, then the Weibull model reduces to
he exponential model, and this means that the rate of
ecrease is constant over time. A value of 	 � 1 means that
s animals age, levels of proliferation/neurogenesis de-
rease more quickly, while a value of 	 � 1 means that the

rate of decrease slows down over time. The power model
has the form

Power : N�t� � �t�� � � (4)

here �, �, and � have the same interpretation as above,
although � cannot be converted to a half-life using the
above equation. Knoth et al. (2010) fit a straight line to their
data when plotted on a log-log graph, and while they did not
discuss power functions, these are commonly plotted on
such a graph and suggests that this might be another suitable
model.

For most data sets, younger animals not only had higher
mean values of labeled cells, but also greater variability
compared with older animals. If this was the case, and the
raw data were available, the errors were modeled as func-
tion of the fitted values (Var (
i) � N(0, �2 � fittedi

2	)). If
only summary data were available, the means were
weighted proportional to their precision (reciprocal of the
standard error).

2.3. Clustering and regression

Hierarchical clustering (Euclidean distance with com-
plete linkage) was used to visualize the rates of decrease in
proliferation and neurogenesis between the species. If more
than one data set was available for a species, the mean was
calculated and used in the clustering.

Data on species body mass (grams) and basal metabolic
rate (mL O2/hour) were obtained from Sieg et al. (2009),
and maximum lifespan data (years) were obtained from The
Animal Ageing & Longevity Database (genomics.senescen-
ce.info/species/). These variables were used in a weighted
regression analysis, with the half-life values for prolifera-
tion and neurogenesis used as the outcome variable. Half-
life values were weighted according to their estimated pre-
cision.

2.4. Number of cells added during various life stages

To calculate the number of cells added to the DG, the
unit of time was converted from months to days. This is
convenient because the cell cycle is approximately 24 hours
and Ki-67 is expressed for a similar length of time (Cam-
eron and McKay, 2001; Mandyam et al., 2007). However,
the number of Ki-67� cells counted is only an approximate
alue, and there are two adjustments that need to be made to
he number of counted Ki-67� cells. First, the number of
ells that divided at Day t is required, and not those that
ivided the previous day but are still expressing Ki-67.
andyam et al. (2007) estimated that approximately 33% of
ells labeled with BrdU 24 hours previously, still expressed i
i-67. In other words, only 67% of cells viewed on a
ection divided at Day t, and the other 33% divided the
revious day. Second, the number of cells counted is not
ecessarily the number of cells added. Because Ki-67 is
xpressed throughout the cell cycle (except G0), a prolifer-
ting cell that is premitotic will be counted as one labeled
ell, whereas if it is postmitotic (but still expressing Ki-67),
hen two labeled cells would be counted. It is important to
stimate the number of cells added, not just the number
ounted. For example, if 5 cells divide, there will be a total
f 10 cells, but only 5 additional cells. It is therefore as-
umed that only 75% of the number of counted cells are
dditional cells (see the Supplementary Data for the deri-
ation of this value). Whether a recently divided cell is
ounted as 1 or 2 cells will depend partly on the magnifi-
ation used, as a higher resolution will make it easier to
istinguish between 2 closely juxtaposed cells. Therefore,
aking these 2 considerations into account, if n labeled
i-67 cells are observed, there are only approximately n �
.67 � 0.75 new cells that have been added to the dentate
yrus. One assumption that has been made is that if a cell
ivides, then it expresses Ki-67, and is thus counted.

By integrating (calculating the area under the curve) of
he exponential model (Eq. 2), the number of cells that have
een added during any time interval can be estimated. In
his model, the � parameter was not significantly different
rom 0 (p � 0.197), suggesting that neurogenesis may stop
ompletely in the long run. If this is true, then inclusion of
he � term would bias the results upward. However, � may

not have been significant because the power was low (Type
II error), and then removing this term from the model would
bias the results downward. Fortunately, one is not forced to
choose one model over another based on an arbitrary p-
value criterion. Estimates were therefore made from both
models (with and without the � term) and averaged, but

ere weighted according to how well each model fit the
ata. This is similar to the previous model comparisons
ANOVA vs. exponential vs. Weibull vs. power). The
eight was 0.60 for the model with no � term, and 0.40 for

the model with �, thus the estimates are pulled closer to the
model with no � term. Confidence intervals (95%) for the
stimates were obtained using a nonparametric bootstrap
Davidson and Hinkley, 1997).

. Results

.1. Establishing the form of the relationship between age
nd proliferation/neurogenesis

A visual examination of the graphs from the various studies
see Supplementary data), suggests that the number of labeled
ells declines exponentially with age. However, only 1 study fit
n exponential model to the data (Ben Abdallah et al., 2010),
nd one other study first log-transformed the data and then
sed a linear regression analysis (Simon et al., 2005). Linear-

zing nonlinear relationships was a useful technique to make

http://genomics.senescence.info/species/
http://genomics.senescence.info/species/
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analysis easier (or even possible) before computers came into
routine use, but such transformations are generally unnecessary
today, as the error structure can be distorted and parameter
estimates may be different compared with the corresponding
nonlinear model (Bates and Watts, 1988; Motulsky and Chris-
topoulos, 2004).

In order to determine the accuracy of the data extraction,
the same analysis as Ben Abdallah et al. (2010) was per-
formed. The approximation error was less than 1% for both
parameters, with a calculated slope of �0.473 and y-inter-
cept of 10,470 (original: �0.475 and 10,510).

The number of Ki-67 and DCX cells from Ben Abdallah
et al. (2010) are plotted in Fig. 1, along with the ANOVA,
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Fig. 1. Model comparisons. All four models fit the data well and the expo
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Fig. 2. Rate of decrease of proliferation (A) and new neurons (B) acros

longer-lived species had a slower rate of decline in proliferation and neurogenesi
exponential, Weibull, and power models. All of the models
fit the data reasonably well, and the exponential model was
the most suitable for both the Ki-67 and DCX data. The
complete results of the model comparisons are presented in
the Supplementary data.

3.2. Estimating parameters from published studies

An exponential model was therefore fit to 21 data sets
from 14 separate studies. The rate of decrease (slope or
half-life) in proliferation and neurogenesis was the main
parameter of interest, and these are displayed in Fig. 2.
The similarities between species can be better appreci-
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ated in Fig. 3A and B, where it can be seen that the
odents form one cluster, and the other animals are in a
econd cluster. The numeric results and graphs of the
tted models are presented in the Supplementary data,
here it can be seen that such a model fits the data well

cross all studies.
Unfortunately, many of these studies reported values as

the number of labeled cells per area or volume. This not
only makes it impossible to extract parameters to determine
the total number of cells, but the reported value is a function
of both the number of cells (the value of interest) and the
size of the region of interest. This means that without further
information on the volume of the structure, it is not possible
to determine whether changes at different ages reflect
changes in cell number or the size of the structure. This can
lead to a “reference trap” (Mayhew et al., 2003; Oorschot,
1994), and is the reason why modern stereological methods
report values as the total number of cells in the structure of
interest and not as density estimates (Baddeley and Vedel-
Jensen, 2005; Mouton, 2002). A similar problem can arise
in studies using in situ hybridization to measure gene ex-
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formed another. The association between lifespan and proliferation was no
r � 0.769, p � 0.043; D). Solid lines are regression lines.
pression when the mean gray level of autoradiographic
images is multiplied by the area of the structure, and an
“integrated” value is reported (Lazic, 2009).

3.3. Relationship with longevity, body mass, and BMR

Proliferation half-life (Ki-67�) values were not associ-
ted with longevity, body mass, or BMR. As can be seen in
ig. 3C, the half-life estimates were quite variable for the
ouse studies. Neurogenesis half-life (DCX� cells) was

associated with maximum lifespan (r � 0.769, p � 0.043;
Fig. 3C). It is also clear that the half-life values for the lesser
hedgehog tenrecs were quite different from the other spe-
cies. This is likely because of inaccuracy in estimating the
half-life, because the youngest animals in this study were
already 2 years old. If data for the hedgehog tenrecs are
excluded, then the strength of the relationship between
neurogenesis half-life and maximum lifespan increases sub-
stantially (r � 0.992, p �0.0001). This relationship is per-
haps not surprising, and suggests that the number of new
cells added is scaled according to lifespan, such that all
animals get a similar proportion of new cells across the
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massive amounts of neurogenesis, while long-lived species
have no neurogenesis for 90% of their life).

3.4. Number of cells added during various life stages

The initial intention was to pool information across stud-
ies, but the different experimental methods and markers
used, definition of the region of interest, and ways of ex-
pressing the final results meant that the data could not be
combined in any meaningful way. Data from Ben Abdallah
et al. (2010) were used again for the reasons mentioned
above, and in addition, they also reported the total number
of cells in the DG.

Developmental ages of mice and corresponding human
ages are taken from Harrison (2010; http://research.jax.org/
faculty/harrison/ger1vLifespan1.html). Given an average lifes-
pan of 28 months for mice, it is possible to determine the total
number of cells that have been added during the life of an
average mouse by integrating Eq. 2 between 0 and 28 months.
This gives a value of 368,500 cells. If we take the total number
of cells in the dentate gyrus to be approximately 550,000 (Ben
Abdallah et al., 2010), then this represents 67% (95% CI,
60.5% to 73.4%) of the adult dentate gyrus cell population.
This is the number of new cells that have been added to the
granule cell layer (GCL) postnatally, and represents an upper
limit to the number of new neurons that can be added, because
only a certain proportion will differentiate into neurons. If we
take 3 months as the age at which a mouse becomes an adult
(corresponding to approximately 20 years in humans; Harri-
son, 2010), then the number of new cells added in adulthood is
114,300, or 20.8% (95% CI, 15.7% to 25.6%) of the mature
DG population. This corresponds to 31.0% (95% CI, 23.6% to
38.1%) of all the cells that will be added postnatally (Fig. 4).
From middle age (10 months) and onward, only about 31,200
new cells will be added. This corresponds to 8.5% (95% CI,
1.0% to 14.7%) of all the cells that will be added postnatally,
representing 5.7% (95% CI, 0.7% to 9.9%) of the mature
population; in other words, only 5.7% of the mature DG
population turns over after middle age. The interesting result is
that there is little addition of new cells in adults, particularly
from middle age and onward. Based on these numbers, it is
straightforward to calculate the number of new neurons; for
example, if we assume that 50% of these cells mature into
neurons (this number may vary according to the experimental
manipulation, and perhaps species and other factors), then the
number of cells is simply divided by 2. Therefore, the number
of new neurons added postnatally as a percentage of the total
number of cells in the DG is 10.4%, which is close to the 6%
value calculated by Cameron and McKay (2001) for rats, who
did not take into account changes in proliferation across the
lifespan, but were fortunate to have selected an “average”
value. Here, Cameron and McKay’s results are extended to
show that the average is not representative, because the num-
ber of new neurons varies several orders of magnitude from
birth to old age. Indeed, a key finding is that for the majority of

an animal’s life (middle age to death — 10 to 28 months — is
64% of a lifetime in mice) the number of new cells added is
only 5.7% of the existing population, and the number of new
neurons will be even less.

4. Discussion

These results have implications for the role of adult
neurogenesis on cognitive and affective behavior; in partic-
ular, the finding that relatively few cells are added during
the majority of an animal’s life. While the dramatic decrease
in neurogenesis in old age has been known for many years
(Kuhn et al., 1996), it has perhaps not been appreciated how
little neurogenesis actually occurs during much of adult-
hood. The contribution that neurogenesis makes to behavior
is difficult to determine because experimental methods that
alter neurogenesis (e.g., physical activity, stress, irradiation)
have numerous off-target effects, and these are usually not
taken into account (Lazic, 2010, and see open peer com-
mentaries: Shamy and Baxter, 2010; Shetty, 2010; Strana-
han, 2010; Yee et al., 2010). This is analogous to determin-
ing the relationship between occupational exposure to
asbestos and the risk of lung cancer, while ignoring smoking
status (a major known risk factor that may be correlated
with occupation) and age (which is a risk factor for many
types of cancers). Of note, when other relevant factors are
taken into account, the relationship between neurogenesis
and behavior is no longer present (Bizon et al., 2004; Castro
et al., 2010; Lazic, 2010; Merrill et al., 2003). There are also
numerous studies that do not find a relationship between

4.3%

8.5%

31%

69%

Old age

Middle age

Adult

Pre−adult

0 3 10 18 28

0 20 38 56 78

Mouse age (months)

Human age (years)

Fig. 4. Percentage of cells added during various life stages. Of all the cells
added to the dentate gyrus postnatally, 69% of these will be added before
adulthood, and only 31% (95% CI, 23.6% to 38.1%) of cells will be added
during adulthood (69% � 31% � 100%). Only 8.5% (95% CI, 1.0% to
14.7%) of new cells will be added from middle age onwards. Thus, for
most of adult life, there are relatively few new cells added to the dentate
gyrus (DG). The results are based on data from mice, and human ages are
given as a reference. Mouse life stages and human comparisons are taken
from Harrison (2010).
neurogenesis and behavior (Jaholkowski et al., 2009 and
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references therein) and one wonders whether neurogenesis
might be an epiphenomenon, which does not have a caus-
ative role in behavior, but which correlates with many
processes that do. The sheer number and variety of factors
that affect neurogenesis, and to such a large extent, might
suggest that neurogenesis is not physiologically important,
because key physiological parameters tend to be kept within
a narrow range (e.g., body temperature, pH, blood pressure,
etc.). Perhaps hippocampal neurogenesis is best viewed as a
general marker of “brain health”; it is high in young, phys-
ically active, and cognitively enriched animals, with ade-
quate levels of neurotransmitters, growth factors, etc., and
low in aged, stressed, inflamed, diseased, and environmen-
tally impoverished animals. If this is true, then attempts to
increase hippocampal neurogenesis per se for therapeutic
ends would be a misguided strategy. However, given that
neurogenesis often correlates with behavioral tests, levels of
neurogenesis might still serve as a biomarker to screen for
potentially useful interventions.

From these results it can be seen that levels of adult
neurogenesis have been overestimated because (1) younger
animals are typically used for experiments, and for much of
an animal’s life, neurogenesis is at a much lower level; (2)
markers such as DCX are expressed for several weeks, and
therefore many labeled cells are present on histological
sections, giving the appearance of a large phenomenon; and
(3) cells continue to divide after labeling with BrdU, and
thus protocols with a lag of more than 24 hours after
injection will have more labeled cells than the number that
divided at the time of the injection. In addition, some BrdU
protocols have multiple injections over several days.

It should be noted that in the experimental data from Ben
Abdallah et al. (2010) the age of the mice ranged from 1 to
9 months, and therefore the calculation of total proliferation
over an average lifespan entailed extrapolating 1 month into
the past and 19 months into the future. While this introduces
some uncertainly into the results, the majority of proliferative
activity occurred before 9 months, and so uncertainties in the
estimate of proliferative activity after this time would not have
a large influence on the estimates. In addition, the model
averaging approach used provides a certain robustness to the
estimates because they are not dependent on a single model
(Anderson, 2008; Burnham and Anderson, 2002).

In this study, estimates were made from mice and extrap-
olated to humans, as there was no human study with compa-
rable data. Knoth et al. (2010) provided the richest data set, but
did not express the results as the total number of cells (but
rather as the number per mm2), which would have required
ccess to the full hippocampus and which is difficult to obtain
or human samples. Nevertheless, the exponential model also
t the human data well, suggesting that the results calculated
rom the mouse data would translate to humans (the usual
aveats of extrapolating from animals to humans apply). As an
nteresting comparison, a 30-year-old human (around the time

any people finish their PhD, and corresponding to 6 months
n a mouse), will have already had about 86% (95% CI, 79%
o 94%) of the new cells that they will ever get. There is a 75%
ecrease in the number of new cells added per day between 20
nd 30 years of age (3–6 months in a mouse), and despite such
large reduction, 30-year-olds do not seem to have gross

mpairments in spatial navigation or pattern separation com-
ared with 20-year-olds.

Wu et al. stated that “major declines of BrdU�, DCX�,
and BrdU�/DCX� cell numbers occur before middle age,
which represents a critical turning period of adult hip-
pocampal neurogenesis” (Wu et al., 2008). However there is
no evidence for a “critical turning point” for neurogenesis,
either in their study or in the other time course studies
examined — instead, there is a smooth decrease over time.
In a recent review, Amrein and Lipp (2009) suggested
neurogenesis peaks at puberty and that this might have
something to do with the transition from juvenile to adult
behavior. Similarly, there is little evidence for neurogenesis
peaking postnatally (Amrein and Lipp’s statement was also
taking into consideration the number of apoptotic cells).

Given the large change in neurogenesis across the lifes-
pan, unqualified statements of thousands of new neurons
being added each day to the hippocampus of the adult brain
(e.g., Aimone et al., 2009; Shors, 2008) can be misleading,
because for the majority of adult life, the number is far less.
To understand the role of neurogenesis in emotional or
cognitive processing (if any), it needs to be examined across
the lifespan (Coleman et al., 2004), because for the majority
of a mammal’s life, neurogenesis occurs at relatively low,
and perhaps negligible levels.
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